Post by Vidhu AntonyIs it possible to compute third order differential equations in maxima ?
Some examples of third order differential equations
(%i22) kill(all)$
(%i1) load(odes);
(%o1) "C:/Program Files
(x86)/Maxima-sbcl-5.36.1/share/maxima/5.36.1/share/contrib/odes/odes.mac"
1. y''' + 3y' - 4y = 0
(%i2) odeL('diff(y,x,3)+3*'diff(y,x)-4*y=0,y,x);
(%o2)
y=%e^(-x/2)*sin((sqrt(3)*sqrt(5)*x)/2)*C3+%e^(-x/2)*cos((sqrt(3)*sqrt(5)*x)/2)*C2+%e^x*C1
2. y''' - 3y' + y = 0
(%i3) odeL('diff(y,x,3)-3*'diff(y,x)+y=0,y,x);
(%o3)
y=%e^(2*cos((8*%pi)/9)*x)*C3+%e^(2*cos((4*%pi)/9)*x)*C2+%e^(2*cos((2*%pi)/9)*x)*C1
3. y''' + y = x*exp(x)*sin(x)^2
(%i4) odeL('diff(y,x,3)+y=x*exp(x)*sin(x)^2,y,x);
(%o4)
y=%e^(x/2)*sin((sqrt(3)*x)/2)*C3+%e^(x/2)*cos((sqrt(3)*x)/2)*C2+%e^(-x)*C1+((26*x-189)*%e^x*sin(2*x)+(130*x-48)*%e^x*cos(2*x)+(676*x-1014)*%e^x)/2704
4. y''' + 4y'' - 5y' = 0, y(0)=4, y'(0)=-7, y''(0)=23
(%i5) odeL_ic('diff(y,t,3)+4*'diff(y,t,2)-5*'diff(y,t)=0,y,t,[0,4,-7,23]);
(%o5) y=-2*%e^t+%e^(-5*t)+5
5. x^3*y''' - x*y' - 3*y = x^2
(%i6) eq:x^3*'diff(y,x,3)-x*'diff(y,x)-3*y=x^2;
(%o6) x^3*('diff(y,x,3))-x*('diff(y,x,1))-3*y=x^2
(%i7) odecv(x=exp(t),eq,y,x);
(%o7) 'diff(y,t,3)-3*('diff(y,t,2))+'diff(y,t,1)-3*y=%e^(2*t)
(%i8) odeL(%,y,t);
(%o8) y=sin(t)*C3+cos(t)*C2+%e^(3*t)*C1-%e^(2*t)/5
(%i9) solution:subst(t=log(x),%);
(%o9) y=sin(log(x))*C3+cos(log(x))*C2+x^3*C1-x^2/5
6. x*y''' - y'' = 0
(%i10) kill(alll)$
(%i11) derivsubst:true$
(%i12) eq:diff(y(x),x,3)- diff(y(x),x,2)=0$
(%i13) tr:diff(y(x),x)=u(x);
(%o13) 'diff(y(x),x,1)=u(x)
(%i14) itr:reverse(tr);
(%o14) u(x)='diff(y(x),x,1)
(%i15) eq1:subst(diff(y(x),x)=u(x),eq);
(%o15) 'diff(u(x),x,2)-'diff(u(x),x,1)=0
(%i16) ode2(eq1,u(x),x);
(%o16) u(x)=%k1*%e^x+%k2
(%i17) subst(itr,%);
(%o17) 'diff(y(x),x,1)=%k1*%e^x+%k2
(%i18) ode2(%,y(x),x);
(%o18) y(x)=%k1*%e^x+%k2*x+%c
or
(%i19) load(odes)$
(%i20) odeC(eq,diff(y(x),x),x);
(%o20) 'diff(y(x),x,1)=%k1*%e^x+%k2
(%i21) integrate(%,x);
(%o21) y(x)=%k1*%e^x+%k2*x+%c2
best
Aleksas Domarkas